King Abdullah II School for Information Technology Department of Computer Information Systems Fall 2013

Software Verification and Validation (1902715)

Instructor: Dr. Omar Adwan

Office: 210 Phone: 22610

Email: adwanoy@gmail.com

Class time: Wed. 3:30-6:30 Class Room: KASIT 203

Office Hours:

Course Description

Verification and Validation course provides all aspects of the system engineering discipline employing a rigorous methodology for evaluating and assessing the correctness and quality of system and software throughout the system/software life cycle. It includes the following topics: Planning verification and validation; verification and validation techniques. Software testing: Component testing, integration testing and system testing. Testing techniques; Verification and formal methods. Critical systems validation. Transition Systems, Kripke Structure, Linear Temporal Logic (LTL), Computational Tree Logic (CTL), Binary Decision Diagrams, Modeling Real-Time Systems, Algorithms for Verifying Real Time Systems.

Course Objectives

This course is designed for advanced graduate students. The course objectives are to provide students with an:

- Understanding of the concepts and theory related to software testing, verification and validation methods and techniques throughout the software life cycle.
- Develop software testing plans and models
- Apply different types of testing approaches
- Perform software inspection and program analysis
- Develop and apply continuous verification methods
- Conduct test reviews and formalize documentation
- Validate critical systems

Topics

This course covers the following topics:

- Introduction to Software Development Process
- Overview of Software Verification Activities
- Overview of Software Validation Activities
- Fundamentals of Software Testing and Analysis
- Basic Software Testing Techniques

- Software Testing Problems and Methods
- Software Testing Process

Course Outline

Overview of Software Process

- Improvement Models
- SEI CMM
- ISO SPICE
- Bootsttrap
- ISO-9000-3
- TickIT
- Trillium

Software Development Process

- Overview of Software Development Lifecycle
- Models
- Waterfall
- Prototyping
- Spiral

Economic Justification for Software V&V

- Software Defect Cost Modely Find/Fix Cycle Costs
- Time-to-Market vs. Quality Tradeoff

Software Verification Overview

- The Inspection Process
- Applying the Inspection Process
- Requirements Inspections
- Design Inspections
- Code Inspections
- Test Inspections
- Practice Code Inspection

In-Process Measurements

- Measurement Attributes
- IEEE Software Metrics Framework
- Overview of In-process Measures
- Project Estimation Measures
- Complexity Measures
- Quality Measures
- Product Measures
- Process Measures

Configuration Management Overview

- Identification
- Building a Software Parts List
- Building a Software Parts Diagram
- Baseline Management

- Baseline Change Assessment
- Auditing and Reporting

Software Validation Overview

- Testing is Hard
- Levels of Testing
- Methods of Testing
- Goals and Objectives of Testing
- Unit Testing
- Integration Testing
- Validation Testing

Software Validation Testing

- Test Planning
- Test Estimation and Development
- Test Execution

How do you know when to start?

• Software Validation Readiness Review

How do you know when you're done?

• Completion Criteria

Measurements

- Time Measures
- Thoroughness Measures
- Quality Measures
- Tools

Software Reliability Growth

- Modeling Approaches
- Model Assumptions
- Model Selection Process
- Tools

Achieving Quality Software On Time

- Scheduling Forwards
- Estimating and Scheduling using the Yellow
- Sticky Method

Evaluation

Midterm Exam	30%
Project	15%
Assignments	15%
Final Exam	40%

Assignments

The Assignments include research paper critiques. For each paper, students should write a review answering each of the following questions:

- 1. What problems(with prior work or the lack thereof) were addressed or surveyed by authors?
- 2. What solutions were proposed or surveyed by authors?
- 3. What are the technical strengths and main contributions of the paper's proposed solution?
- 4. What are the technical weaknesses of the paper's proposed solution?
- 5. What suggestions do you have to improve upon the paper's ideas?

Project

Students are to submit a paper-like on any topic related to V&V. A published paper is a plus with a full mark on project.

Text Book

Marcus S. Fisher, Software Verification and Validation: An Engineering and Scientific Approach, Springer, 2007. ISBN: 0387327258.

References

- 1. Steven R. Rakitin, Artech, Software Verification and Validation for Practitioners and Managers, 2nd Edition, Computer Science Library, 2003, ISBN: 1580532969
- 2. Srinivasan Desikan, and Gopalaswamy Ramesh, Software Testing: Principles and Practices, Pearson Education, 2006, ISBN: 817758295
- 3. Mauro Pezzè, and Michael Young, Software Testing and Analysis: Process, Principles, and Techniques, Wiley, 2007, ISBN10: 0471455938
- 4. Ian Sommerville. Software Engineering, 8th Edition. Addison Wesley, 2006.
- 5. J.M. Spivey. The Z Notation: A Reference Manual. 2nd edition, Prentice-Hall, 1992.
- 6. Roger S. Pressman. Software Engineering A practitioner's Approach, Sixth Edition. McGraw-Hill, 2004.
- 7. Shari Lawrence Pfleeger, *Software Engineering: Theory and Practice*, 2nd Ed., Prentice-Hall, 2001.
- 8. University of Jordan E-library: http://e-library/
- 9. IEEE Transactions on software engineering
- 10. ACM Transactions on software engineering